Title: Mitigating Effects of Wind and Seismic Hazards on Tall Buildings

Duration: April 2023 to March 2026

Objectives:

To improve the resilience of tall buildings subject to wind and seismic hazards

- Design framework for assessment of wind-induced cross-wind and torsional effects on tall rectangular buildings
- Strategies for aseismic engineering of tall buildings

Progress Highlights:

Vertical 1

- Characterisation of exposure/inflow conditions for wind tunnel investigation of tall rectangular buildings
- Wind tunnel investigation on tall rectangular buildings with identified geometric proportions for various angles of wind incidences and terrain categories
- Numerical investigations on benchmark tall building using LES under turbulent inflow condition
- Prediction of wind pressure coefficients on tall buildings using machine learning

Vertical 2

- Numerical analysis and validation of an RC column nonlinear model with and without influence of P-V-M stresses
- Evaluation of risk of the identified tall building configurations considering the hazard level of site and the fragility
- Development of manufacturing process of Energy Dissipating Interlocking Masonry (EDIM) blocks
- Numerical and Analytical studies on floor mass isolation technique for seismic response control

Shake table testing of building frame with floor mass isolation robes

Characterisation of exposure/ inflow using multi-hole velocity probes robes

Wind tunnel testing of 1:4:7 rectangular building model

CFD simulation on a tall building model using LES

Future Programme:

- Experimental investigations on tall buildings under different exposure conditions towards evaluation of crosswind and torsional spectra
- > LES simulations on tall rectangular buildings of varying geometric proportions
- Application of machine learning model for prediction of crosswind and torsional spectra of tall rectangular buildings
- Estimation of quantitative damage limit states and fragility analysis of columns in different failure modes with influence of P-V-M stresses
- > Demonstration of energy dissipation characteristics of EDIM wallets
- > Analytical studies to study the higher mode effects on the floor isolation

PI and Co-PI

Dr. M. Keerthana (PI) Dr. G.V. Rama Rao (Co-PI)

Team:

Vertical 1: Wind Hazard	Vertical 2: Earthquake Hazard
Dr. P. Harikrishna	Dr. K. Sathish Kumar
Mr. G. Ramesh Babu	Dr. C.K. Madheswaran
Dr. A. Abraham	Ms. R. Sreekala
Ms. N. Ramya	Dr. P. Kamatchi
Ms. Renuka Darshyamkar	Dr. S.R. Balasubramanian
	Mr. J.C. Sunil

Date: December 2024