Title: Sustainable and Reliable Steel Lattice Structures (SaRSS)

Duration: April 2023 to March 2026

Objectives:

- Behaviour of High Strength Steel (HSS) members under axial loads
- Component level behaviour of High Strength Steel (HSS) structural connections
- Reliability-based design of Transmission Line (TL) Towers
- Progressive collapse analysis of Transmission Line (TL) Towers

Progress Highlights:

- Mechanical Characterization of HSS grades of yield strength 450, 550, and 750 MPa
- Development of an elastoplastic analysis procedure incorporating isotropic hardening with linear and nonlinear hardening terms to establish the constitutive model for HSS under monotonic loading
- Strength of bolted connections experiencing block shear failure in HSS plate elements
- Creation of a test database for TL tower members in compression & statistical analysis for determination of modelling error for the design standards
- Experimental studies on the buckling capacity of cross-arm lower member
- Case study on failure analysis of 220 kV double circuit medium angle prototype tested TL tower and numerical investigations for revised wind zone loads
- Case study on a 110-kV suspension and tension-type guyed TL tower to study the mechanical behavior under broken conductor load

Mechanical characterization of high strength steel

Test set-up Buckling of CALM with $\lambda = 40 \& \lambda = 100$ Buckling test on TL tower Cross Arm Lower Member (CALM)

Future Programme:

- > Mechanical characterization and testing of HSS materials through experimental studies
- Experimental studies on HSS tension and compression member
- > Experimental studies on HSS bolted connection
- Creation of a test database for TL tower members in tension and connections and experimental studies to bridge the gaps in the test database
- Evaluation of broken conductor loads for progressive collapse analysis of transmission line towers
- Numerical investigations on the progressive collapse of 220 kV transmission tower subjected to dust storms and broken conductor loads

PI and Co-PI

- Dr. P. Prabha (PI)
- Dr. R.P. Rokade (Co-PI)

Team:

 Behaviour of High Strength Steel (HSS) members under axial loads Component level behaviour of High Strength Steel (HSS) structural connections 	 Reliability-based design of Transmission Line (TL) Towers Progressive collapse analysis of Transmission Line (TL) Towers
Dr. M. Saravanan Dr. M.B. Anoop Dr. V. Marimuthu Dr. A. Cinitha	Dr. R. Balagopal Mr. C. Kumarasekar Mr. S. Vinoth Krishnan Dr. M.B. Anoop
Dr. M. Surendran Dr. J. Prawin	

Date: September 2024